The effect of electron and ion temperature on the refractive index surface of 1–10 kHz whistler mode waves in the inner magnetosphere
نویسندگان
چکیده
Whistler mode waves in the magnetosphere play an important role in the energy dynamics of the Earth’s radiation belts. Previous theoretical work has been extended to include ions in the fully adiabatic warm plasma theory. Using a finite electron and ion temperature of 1 eV, refractive index surfaces are calculated for 1–10 kHz whistler mode waves in the inner magnetosphere (L≲ 2.5). For the frequencies of interest, a finite ion temperature is found to have a greater effect on the refractive index surface than the electron temperature and the primary effect is to close an otherwise open refractive index surface. Including a finite ion temperature is especially important when the wave frequency is just above the local lower hybrid resonance frequency. For wave frequencies more than ∼1 kHz above the local lower hybrid resonance frequency, including the ion temperature has a negligible effect on the refractive index surface calculation. The results are used to assess previous conclusions on whether in situ whistler mode sources can be realistically used to precipitate energetic electrons. It is found that the number of in situ sources needed to illuminate the inner plasmasphere (L≲ 2.5) with whistler mode energy may be greater than previously predicted.
منابع مشابه
Journal of Geophysical Research: Space Physics Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion temperature
Whistler mode waves play a major role in the energy dynamics of the Earth’s magnetosphere. Numerical ray tracing has been used for many years to determine the propagation trajectories of whistler mode waves from various sources, both natural and anthropogenic. Previous work has been under the ideal cold plasma assumption even though temperatures of the background ions and electrons are in the r...
متن کاملThe preventive role of Snell’s law in mode conversion from Z- to whistler-mode waves in an inhomogeneous magnetoplasma with a low density
Electromagnetic waves with different modes, such as Z-, whistler-, LO- and RX- modes are found in different regions of the Earth magnetosphere and the magnetosphere of other planets. Since whistler-mode waves influence the behavior of the magnetosphere, and they are used as experimental tools to investigate the upper atmosphere, they are important. On the other hand, the mode conversion process...
متن کاملPropagation of whistler mode waves with a modulated frequency in the magnetosphere
[1] This paper presents results from experimental and numerical studies of the propagation of whistler mode waves in the Earth’s magnetosphere. An experiment conducted at the High Frequency Active Auroral Research Program (HAARP) on 16 March 2008 demonstrates that ionospherically generated waves with particular frequency‐time formats are amplified on their pass from HAARP to the conjugate locat...
متن کاملEffect of frequency modulation on whistler mode waves in the magnetosphere
[1] We present results from numerical studies of whistler mode wave propagation in the Earth’s magnetosphere. Numerical simulations, based on the novel algorithm, solving one-dimensional electron-MHD equations in the dipole coordinate system, demonstrate that the amplitude (and power) of the whistler mode waves generated by the ground-based transmitter can be significantly increased in some par...
متن کاملUltra-Sensitive Optical Biosensor Based on Whispering Gallery Modes: The Effect of Buffer Solutions Refractive Index on Their Sensitivity and Performance
Background: Whispering gallery modes (WGM) biosensors are ultrasensitive systems that can measure amount of adsorbed layer onto the micro-cavity surface. They have many applications including protein, peptide growth, DNA and bacteria detection, molecular properties measurements and specific interaction and drug table recognitions due to their high sensitivity, compact size and label free sensin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015